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Computational Issues in Electromagnetic Coupling to a

Slit Cylinder EncIosing an Off-set Cylinder*

Ronald F. Schmucker and Richard W. Ziolkowski

Fields,Materials,Plasmas Modeling Group

EngineeringResearchDivision

ElectronicsEngineeringDepartment

Lawrence LivermoreNationalLaboratory

Livermore,CA 94550

The canonicalscatteringand aperturecouplingproblem of a planewave incidentupon a slit
cylinder enclosing another off-set cylinder has been analytically solved using a duaI series
approach. The solution expressions are nested sums involving Bessel functions. Numerical
evaluation of the physical quantities of interest (bistatic radar cross sections, induced currents, and
induced fields) typically requires Bessel functions for thousands of arguments, and several hundred
orders at each argument. Thus, the execution time of the Bessel function routines becomes critical.
A comparison of the timing and accuracy of the new FPS Bessel function software with other non
FPS Bessel function routines will be given.

In addition, there are two major considerations in developing graphics post-processing
routines to display the solutions which result from this modeling. First, there is a large number of
different system geometries and incident field conditions to model, each with its own computed
solution. Secondly, cross-comparisons of different physical quantities are desired to help develop
an understanding of the relevant physics. These post-processing needs have required the
development of several new gyaphics display methods. A variety of examples from this canonical
coupling problem will be given to demonstrate the efficacy of these graphical display routines.

An analytic solution has been developed for the canonical problem of a plane wave incident

on a slit cylinder enclosing an offset interior cylinder. Numerical evaluation of the solution involves

the computation of Bessel functions for thousands of arguments and hundreds of otiers. Typically,

this means approximately one third of the required cpu time used in the computation of a solution

for one particular geometry and set of incident field conditions is spent just computing these Bessel

functions. Since Bessel functions are well defined, and are of general interest, they are a good

candidate-for using optimized machine dependant routines. The results of a comparison of the

speed and accuracy of two Bessel function packages, one from FPS (X64 architecture only), and

another from IMSL (semi machine independent), will be shown.

Another computational issue which is often overlooked in numerical and computational

*Thj~ work was performed under the auspices of the U.S. Department Of Energy

by Lawrence Livermore National Laboratory under contract No. W-7405 -Eng-48.
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fbrums is the display of the computed answers. More attention needs to be spent on developing the

graphical post-processkg portion of computer modeling. This extra emphasis combined with

today’s more powerful graphics libraries and devices means greatly enhanced comprehension of the

results with minor extra effom These more intuitive displays include: placing drawings on X-Y

plots, supefiposing contour and halftone pictures, and the simultaneous display of multiple

phyticd quantities. ‘I’hedisplay of multiple physical quantities is necessary to understand the

comeladons beomen them. These techniques have generalpurpose applicability graphical examples

from this canonical modeling problem will be shown to show their usefidness.

The physical class of problems being explored consists of an electromagnetic plane wave

incident upon an infinite slit cylinder enclosing another infinite cylinder (see following diagram).

~ H polarized ‘ Variable size
incident plane interior cylinder
wave located anywhere

inside

wavelength = ~ a,b,c, and angle

Inc
angle = q

{

-

Aperture of
any size

The modal expansions of the field components and the enforcement of electromagnetic boundary

conditions produces a system of dwd series equations.The firstquation applies to the aperture

angles, the second quation over the metallic angies. The resulting dual series, which must be

salved for the unlmown -fficients Am, is:

; jm~ [A J(kb) H’(kb) +!? A Y H’(kb) H’(kb)] = f(q))
e mm m

m=. m .
q=.m q rnq rn m
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where k=2x/ ~, Z. is the free space impedance, z is the impedance of the interior cylinder surface,
.

and

Ymq = -j(mq)y ~ * (k) J O@
e

pAX3 p p-m

[

z ~(ka) - j ~ J;(ka)

Qp(ka) = -
z H#ka) - j zoH;(ka) 1
q.jq(pk

f((p )=-~ [j e J’ (kb) + H’ (kb) [
n a

J (kc)
P-q

agd Jn(x) is the Bessel function of the fit kind of order n. The term ~(x) is the Hankel function

of the second Idn& which is dei?medas Jn(x) -j (Yn(x)), where Yn(x) is the Bessel function of the

second kind. The terms J’n(x) and H’n(x) are the derivatives of the Bessel and Hankei functions,

~d ~ computed using J@l(x) and ~t l(x) respectively. The importance of the Bessel function

routines can immediately be seen by their frequency of usage in the previous equations. In addition,

once the unkno~coefficients are determin~ the derived expressions for induced elecrnc fields,

induced curren~ and bistatic (including radar) cross sections are sums invoiving more Bessel and ~

Hankel fhnction terms. For example, theradialcomponent of theinduced elecrncfieldcontributed

by theintexiorcylinder~

E (;) =; B ejm Y[H’ (kp)sin(~-y) - (~ )H~kp)ccx(9-y)
m

( intefio~ fnm -co m

where p is the distance from the interior cylinder to the field poin~ Bm is itself another summation

involving the unknown coefficients A~, as well as Hankei functions and Bessel functions of the

first kind
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Bessel funaons
.

The solution to this coupling problem clearly requires the computation of Bessel functions

for numerous arguments. Typically, convergence of the summations requires taking two or three

hundred texms, thus WO or three hundred orders for each Bessel function argument are needed.

The 15rstsoftware implementation used IMSL routines (modMed tim the Cray version) for the

calculation of both Jn(x) and Yn(x). These IMSL routines provide Bessel functions for integer

der and real arguments Measurement of the cpu intensive portions of the solution code indicated

that one third-of the cpu time required was spent computing these two Bessel functions. Typically,

hours of FPS 264 cpu time are required to completely solve a given set of geometry and incident

field conditions. Complete radar cross section scans, which iterate over many wavelengths, can

takea ITS-264 cpu day. Therefm one third of the total cpu time is a significant amount of time.

Recently FPS developed some new Bessel fimction software for their X64 hardware. We

applied this new software to try to improve our execution times. Unfortunately, the FPS routines

compute the more complicated Bessel I%nctions of integer orders and complex arguments. Since

real is a subtype of complex, the FPS sofhmre was used and arguments of complex type were

“ passed to i~ but with the imaginary part equal to zero. The resulting timings were impressive,

especially since the complex Bessel fuctions are much more difficult to compute. For these real

arguments the FPS Bessel function software computed the J and Y Bessel functions in the same

time IMSL sofmmre computed just the J Bessel function! The accuracy of the WO software

packages was almost identical. IMSL’S sofmm.re was sometimes capable of squeezing out a few

, more orders than the FPS software before failing due to machine range limitations.

To further test speed and accuracy, the IMSL routine which computes Jn(z), where z is a

complex axgumenL was also converted to run on the FM-264. IMSL does not have a routine to

compute Yn(z), so no compmn ~ be -e. ~~w ~ng comP~sons be~een tie ~SL

and the FPS Bessei fimction sofhmre fm complex arguments showed drastically varying execution

speed ratios depending on the arguments passed=This phenomena was traced to the FPS software

having three diffisrent algorithms used to compute the Bessel functions. If the absolute value of the

imaginary part of the argument is greater than five, one method is used. Othetise one of NO other

methods is use& based on the absolute value of the real part of the argument. The domains of the

different methods arc shown in the following complex plane diagram ~
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ElWS Method 1 used I!IR$l Method 2 used

n........................+...,
&~=~, Method 3 used
.J**:*:*.+:

Bessel function routine is strongly dependent on which domain the‘Ihe speed of the FPS

arguments of the Bessel fiction fall in and thus what computational algorithm is use-d The

following table summariz es the perfoxmancc of these huo Bessel fiction packages for complex

-nts and integer orders.

‘Bessel function of the first I&d, complex argument and integer orders
. Speed

Method / Argument
FPS software

FPS compared to
IMSL IMSL software

1- 111>5.0 8.3 8.3 X Slower

2-111 <5.0 &l Rl <20. 0.36 2.7 X Faster

3-111 <5.0& lRl>20. 0.42 2.3 X Faster

As the previous table shows, the FPS Bessel function software will perform between 2.7 times

f- and 8.3 times slower than the IMSL sofbmre. Clearly, use of this new FPS Bessel function

software may help or hurt execution sped depending on the arguments being computed.
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We can solve a large number of canonical problems using this methodology. The choices

include various cylinder sizes and placements, tiemnt aperture sizes, and different wavelengths

and angles of the incidence of the incoming plane wave. To facilitate the understanding of these

results (and other problems), the use of graphical displays are importanL With the large number of

probkms to be solved here, and as the complexity of problems being solved on computers

increases, conventional techniques are inadequate. Effort should be spent on improving these

diSPhYS, especially since many of the improvements can be used on a large variety of problems.

The folIowing exampies will emphasize full utilization of black and white displays. Monochrome

devices are m- commom and fa publications, black and white graphics are preferreti

Many published graphs display their answers on mes but do not include ~Y ex~ visu~ .

clues. It is often relatively easy and extremely helpfid to add a suppordng picture. The following
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In this diagram the black triangle indicates the direction of the incident energy, and the open triangle

depitis the obs-ation angle. Thus, the figure represents a radar cross section result. Once the

above notation is known, a glance at this plot provides a description of the problem being solved
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The elexmic fields induced in the interior by the coupling of the incident energy through this

cavity backed aperture is another physical quantity of interest The figure below is the classical

contour plot with a diagram of the geomeq superimposecL

/)
// /-l
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This case represents a situationwhere the wavelengthis resonantwith theparticular geomeuy. As

one can see, the induced electric field insidethiscavityhas a greatdeal of strucrure. The problem

with this display is determining which areas are field enhanced and which areas are suppressed,

e.g., is the region near the aperture an increased field area or a null? Labels could be placed on

these contour line% but with the number of field regions in this cavity, reading-labels would be

tedious if not impossible. Our solution was to superimpose the above contour picture and a simple

shaded gray-scale pic~. Using darker shading to denote higher field values, this combination

produces the following picture.
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This composite display shows the geometry being solv~ the contour levels of the induced ekcrnc

field and in an intuitive manner, depicts the magnitudes of the contour leveis.

Our display of the currents induced on both the slit cylinder and the interior cylinder also

employs some unconventional techniques. The classical method involves simply plotting the

magnitude of the induced current versus the angle on the cylinder. This can be done for both the

interior cylinder and the slit cylinder. However, to determine how the interior and exterior cylinder

currents are correiate4 current values tim both curves have to be compared= As the wavelength

becomes small, the structure of the induced cunents becomes complicatti, with peak and null

points occurring in the induced cuments with separation on the order of a few degrees of angle.

Thus, it becomes diffnlt to det-e whether a peak in the interior cylind= current aligns with a

peak or a null in the slit cylinder current. To remedy this, we have superimposed the current

magnitudes for both cylinders in offset polar graphs. The offset is merely the offset of the interior

cylinder in the geome@ybeing studied. The current induced on the slit cylinder is plotted as a solid

line, while the interior cylinder current is plotted as a dashed line. The ubiquitous geome~ diagram

is also Superimpod ~ give the following -lay”
..
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The maximum current magnitudes are 121?8 and 8.9161-----------

Again, the black triangle depicts the direction of incidence of the incoming plane wave for the

pficular Problcrnbeing displayed This display vastly simpl~les the effort required to understand

the comelations between the induced current features on both of the cylinders.

There is another overall benefit from putting problem information in the form of a diagram on

your plots The diagram greatly aids in data managemen~ where the sornng and searching of a

, large quantity of piots can be frustrating and very time consuming. Instead of having to read a

seIection of parameters off a figure, glancing at the diagram is usualIy sufficient to identify a

pamicular ploL

Concl~o~
.

‘I%cnew FPS Bessel fimction sof~are correctly computes Bessel functions of the first and

second kind fm complex arguments and integer orders. This FPS sofnvare in general executes over

twice as fast as software packages not optimized to FPS X64 hardware. However, if only

computing Bessel functions of the fit kind for complex arguments with the magnitude of the

imaginary parts greater than five, the FIN software is exceedingly slow and better alternatives



, exist.

The addition of supplementary graphical information to traditional display fomats can greatly

enhance the clarity of a display. By using some nonstandard techniques, color does not have to be a

prerequisite to good graphics. But whether using color or not, improved graphics convey both

better understanding and decrease the time required to assimilate results.

*


